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A B S T R A C T

Measurement of lysosomal disease (LD) biomarkers can reveal valuable information about disease
status. Lyso-globotriaosylceramide (lyso-Gb3), glucosylsphingosine (lyso-Gb1), galactosyl-
sphingosine (psychosine), and glucose tetrasaccharide (Glca1-6Glca1-4Glca1-4Glc, Glc4) are
biomarkers associated with Fabry, Gaucher, Krabbe, and Pompe disease, respectively. Clinical
biomarker testing is performed to guide patient management, including monitoring disease pro-
gression and initiating treatment, and in diagnostic evaluations of either symptomatic patients or
asymptomatic individuals with a positive family history or abnormal newborn screen. Biomarker
analysis can be performed through independent analysis of a single analyte or as a multiplex assay
measuring analytes for more than one disorder utilizing liquid chromatographic separation and
tandem mass spectrometric detection. These guidelines were developed to provide technical
standards for biomarker analysis, results interpretation, and results reporting, highlighting Fabry,
Gaucher, Krabbe, and Pompe diseases as examples.
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Introduction

Biochemical and clinical features of lysosomal
diseases

Lysosomal diseases (LDs) comprise a clinically heteroge-
neous group of inherited conditions caused by lysosomal
enzyme deficiencies and subsequent intra-lysosomal accu-
mulation of macromolecules (eg, glycogen, glycosamino-
glycans, and glycosphingolipids).1 Substrate accumulation
leads to lysosomal dysfunction and dysregulation of
downstream pathways in affected tissues, resulting in a
multi-systemic disorder and a broad spectrum of clinical
manifestations. LDs are progressive with variable age of
onset and clinical severity, with early age of onset associated
with a more severe clinical course.2 A growing number of
LDs are identified by newborn screening in some states or
countries, including Pompe disease, mucopolysaccharidosis
type I (MPS-I), mucopolysaccharidosis type II (MPS-II),
Krabbe disease, Fabry disease, Gaucher disease, and acid
sphingomyelinase deficiency (ASMD).3,4 At the time of this
report, those included on the Recommended Uniform
Screening Panel (RUSP) are Pompe disease, MPS-I, MPS-
II, and Krabbe disease (https://www.hrsa.gov/advisory-
committees/heritable-disorders/rusp). Gaucher disease,
metachromatic leukodystrophy (MLD), and ASMD have
been recommended as candidates for pilot programs by the
newborn screening translational research network.5

The diagnosis of a specific LD is confirmed by demon-
stration of decreased enzyme activity and pathogenic vari-
ants in the relevant gene. Biomarker analysis in the
diagnostic setting may also help to clarify variants of un-
certain clinical significance and functions to provide a
baseline value. Longitudinal biomarker analysis in patients
offers an additional tool to guide therapeutic intervention
and/or response. Available treatment may include enzyme
replacement therapy (ERT), substrate reduction therapy
(SRT), chaperone therapy, or hematopoietic stem cell
transplantation and is available for a minority of LDs.
Earlier therapeutic intervention has been shown to be suc-
cessful in reducing disease symptoms and slowing disease
progression.6-8

Biomarkers in lysosomal diseases

A biomarker, or biological marker, is defined as “a char-
acteristic that is objectively measured and evaluated as an
indicator of normal biological processes, pathogenic pro-
cesses, or pharmacologic responses to a therapeutic inter-
vention.”9 Biomarkers for LDs arise directly or indirectly
from defective degradation of macromolecular substrates
and derivatives. The first LD biomarker described was
glucosylceramides (Gb1), isolated in 1974 from the spleen
of a patient with Gaucher disease.10 The following year,
globotriaosylceramide (Gb3) was found to be elevated in the
plasma from a male and affected family members with
Fabry disease.11 Additional biomarker-disease associations
have since been discovered, including galactosyl-
sphingosine in Krabbe disease,12,13 lyso-sphingomyelin in
ASMD,14,15 and glucose tetrasaccharide (Glca1-6Glca1-
4Glca1-4Glc, Glc4) in glycogen storage diseases (GSDs),
including Pompe disease,16 and disorders of autophagy.17

Early in the development of enzyme replacement thera-
pies, biomarkers were measured in conjunction with enzyme
activity to assess the drug’s effect on circulating substrate
levels.18,19 More recently, they have been used as surrogate
endpoints in drug development, clinical trials, and thera-
peutic assessment to evaluate efficacy and toxicity.9 Addi-
tionally, biomarkers may be used to assess disease severity,
as an indicator of disease progression, to monitor compli-
ance in SRT-treated patients, to augment newborn
screening, and to clarify ambiguous situations in asymp-
tomatic individuals. As such, biomarker monitoring has
been incorporated in recommendations and consensus
guidelines for patients with Fabry disease, Gaucher disease,
Krabbe disease, and Pompe disease.6,20-25

This technical standard focuses on methods for analyzing
lyso-Gb3, lyso-Gb1, galactosylsphingosine, and Glc4 in the
diagnosis or monitoring of patients with Fabry disease,
Gaucher disease, Krabbe disease, and Pompe disease,
respectively. We have chosen these LDs because they are
among the most common LDs, are included in the RUSP,
and/or have available therapies. As more centers consider
adding these LD biomarkers to their menus and as these
tests become integrated into the follow-up of abnormal
newborn screening results, this laboratory technical standard
will provide a reference for the measurement, interpretation,
and reporting of these analytes. As therapeutic options
emerge for other LDs, including MLD and Niemann-Pick
type C, future revisions may consider further discussion
on methodologies for their respective biomarkers.
Clinical description of Fabry disease

Fabry disease is one of the most common LDs with global
prevalence estimates of 1 in 40,000 to 1 in 170,000.26 This
X-linked disorder of globoside degradation is caused by
pathogenic variants in GLA (HGNC: 4296; NM_000169)
and a deficiency of lysosomal α-galactosidase A (α-Gal A;
EC 3.2.1.22), resulting in impaired degradation of Gb3 and
its subsequent accumulation in cells of the vascular, renal,
and autonomic nervous systems, which leads to disease
symptoms.

Affected males with a classic phenotype present in early
childhood with neuropathic pain, hypohidrosis, gastroin-
testinal involvement, angiokeratomas, and corneal whorls.27

Disease progression in adulthood (when untreated) leads to
end stage renal disease, hypertrophic cardiomyopathy, and
strokes with death occurring in the late fifth to early sixth
decade from kidney failure, cardiac involvement, and
strokes.28 Heterozygous females typically manifest symp-
toms of the disease, although generally at a later age than
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Figure 1 Biomarker structures. Structures of (A) lyso-Gb3, (B) lyso-Gb1, (C) galactosylsphingosine, and (D) Glc4.
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affected males, and present with varying signs, symptoms,
and degrees of severity due at least in part to X-chromosome
inactivation.29-31 Attenuated phenotypes have been
observed in patients with Fabry disease, such as those
harboring the pathogenic variant c.644A>G p.(Asn215Ser),
who present primarily with cardiac involvement and milder
symptoms in other organs.27 Food and Drug Administration
(FDA)-approved therapies for Fabry disease include ERT
(agalsidase beta) and chaperone therapy (migalastat).

The diagnosis of Fabry disease is established in males by
enzyme testing demonstrating deficient α-Gal A activity.32

In heterozygous females, enzyme testing is unreliable
because of X-inactivation, and the diagnosis is based on
gene sequencing.33 Biomarker testing often supports the
diagnosis and can be particularly useful in patients with an
attenuated phenotype. Elevations of deacylated Gb3, lyso-
Gb3 (Figure 1A), are highest in patients with classic Fabry
disease when compared with atypical forms and are also
higher in affected males than females.34,35 Assessment of
plasma lyso-Gb3 has been shown to improve diagnostic
outcomes in females with normal α-Gal A activity, although
false-negative results may occur for attenuated pheno-
types.36,37 Normal lyso-Gb3 levels have been observed in
some patients with attenuated phenotypes harboring the
GLA variants c.644A>G p.(Asn215Ser), c.335G>A
p.(Arg112His), c.956T>C p.(Ile319Thr), c.640-801G>A,
and c.431G>A p.Gly144Asp.34,38,39 Finally, lyso-Gb3 is not
specific to Fabry disease because it has also been reported in
patients with MPS-I, MPS-II, and MPS-III, suggesting that
its accumulation origin may not be directly related to α-Gal
A deficiency.40
Clinical description of Gaucher disease

Gaucher disease is the most common LD with global
prevalence estimates of 1 in 26,000 to 1 in 63,000 for type 1
Gaucher disease and 1 in 2000 to 1 in 8000 for types 2 and 3
Gaucher disease.41 Disease incidence estimates in in-
dividuals of Ashkenazi Jewish descent are as high as 1 in
450 births for type 1 Gaucher disease.42 This autosomal
recessive sphingolipidosis is caused by biallelic pathogenic
variants in GBA (HGNC: 4177; NM_00157) and enzymatic
deficiency of acid β-glucosidase (GBA1; EC 3.2. 1.45) with
subsequent accumulation of lysosomal glucosylceramide
and its sphingoid base, lyso-Gb1 (Figure 1B).43,44 Type 1
Gaucher disease, the most common form in the United
States, can be distinguished from types 2 and 3 by its limited
neurological involvement. Patients with type 2 (acute in-
fantile neuronopathic) and type 3 (chronic neuropathic)
Gaucher disease account for ~1% and 5% of patients in the
United States, respectively.45

The primary phenotypic consequences of type 1 Gaucher
disease include hepatosplenomegaly, thrombocytopenia,
growth delay, bone involvement, and/or pulmonary
involvement with age of onset ranging from childhood to late
adulthood.43,46 Patients with type 1 Gaucher disease have an
increased risk for multiple myeloma and Parkinsonism.47
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Type 2 Gaucher disease follows a rapidly progressive and
often fatal course that presents with neonatal hydrops fetalis,
hepatosplenomegaly, anemia, thrombocytopenia, interstitial
lung disease, and neurological manifestations, including sei-
zures, bulbar palsy, hypertonia, and supranuclear gaze
palsy.27,47 Type 3 Gaucher disease is characterized by
infantile-childhood onset with a progressive disease course
and clinical features of hepatosplenomegaly, interstitial lung
disease, anemia, thrombocytopenia, and characteristic bone
and neurological involvement.27

FDA-approved ERT (imiglucerase, velaglucerase alfa,
and taliglucerase alfa) and SRT (miglustat and eliglustat) are
currently available treatment options for symptomatic pa-
tients with types 1 and 3 Gaucher disease, although they are
generally not effective in the amelioration of neurological
manifestations for patients with type 3 Gaucher disease.2

The findings of low enzyme activity together with bial-
lelic pathogenic variants and/or elevated biomarker can
establish the diagnosis of Gaucher disease. Biomarker
testing is also useful in evaluating therapeutic response and
treatment compliance.48-51 Established biomarkers for
monitoring patients with Gaucher disease include tartrate
resistant acid phosphatase, chitotriosidase activity, angio-
tensin converting enzyme, and/or C-C motif ligand 18/pul-
monary-activated-related chemokine; however, their levels
reflect macrophage activation and/or lipid storage and are
not specific to Gaucher disease.52 As a byproduct of the
enzymatic defect, lyso-Gb1 levels directly reflect sphingo-
lipid turnover and correlate with levels of tartrate resistant
acid phosphatase, chitotriosidase activity, angiotensin con-
verting enzyme, and C-C motif ligand 18/pulmonary-acti-
vated-related chemokine.53 The deacylated species
accumulates in plasma and tissues of patients with non-
neuronopathic and neuronopathic disease types,50,51,54,55 as
well as in patients with saposin C deficiency (because of
pathogenic variants in PSAP), a rare, atypical form of
Gaucher disease.56 Current evidence supports lyso-Gb1 as
the most reliable biomarker for diagnosis, prognosis, and
disease and therapeutic monitoring.57

Clinical description of Krabbe disease

Krabbe disease, also known as globoid cell leukodystrophy,
is an autosomal recessive LD caused by a deficiency in
galactocerebrosidase (GALC; EC 3.2.1.46) activity.25,58

This disorder is caused by homozygous or compound het-
erozygous pathogenic variants in the galactocerebrosidase
gene (HGNC: 4115) with an estimated frequency of 1 in
400,000. Krabbe disease can be divided into 4 subtypes
based on the age of onset and clinical presentation, with a
majority of patients developing the infantile-onset form
characterized by rapid neurodegeneration and early death.59

Patients with the late-onset type exhibit ataxia, weakness,
vision loss, and psychomotor regression.58,59

Hematopoietic stem cell transplantation is the only treat-
ment available for patients with Krabbe disease and is shown
to have the potential to be effective when performed several
weeks before the onset of symptoms, which, in the infantile
form, translates to the need for intervention in the 1st 4 to 6
weeks of life.60 Several states, corresponding to 1/3 of the US
newborn population, have incorporated Krabbe disease into
their newborn screening program, and it was added to the
RUSP in July 2024. Galactosylsphingosine, one of the 4
substrates degraded by galactocerebrosidase enzyme
(Figure 1C), is shown to be neurotoxic at elevated concen-
trations, is elevated in Krabbe disease and saposin A defi-
ciency (due to pathogenic variants in PSAP) and may be
useful to monitor disease progression before and after treat-
ment.61,62 Quantification of galactosylsphingosine can be
used for confirmation of primary screening results that are
based on lack of enzyme activity.

Clinical description of Pompe disease

Pompe disease (acid α-glucosidase (GAA) deficiency; EC
3.2.1.20) is an autosomal recessive GSD that results from
enzymatic deficiency of lysosomal α-glucosidase leading to
multisystemic glycogen accumulation. Glucose tetra-
saccharide (Glca1-6Glca1-4Glca1-4Glc, Glc4; Figure 1D), a
marker of glycogen accumulation, is elevated in the urine of
patients with Pompe disease, GSD-III, GSD-VI, and GSD-
IX.63-65

Pompe disease has a variable age of onset and presents as
infantile-onset Pompe disease (IOPD) or late-onset Pompe
disease (LOPD). Prevalence estimates in the US for IOPD
and LOPD is approximately 1 in 28,000.66 IOPD is apparent
shortly after birth and presents with hypotonia, muscle
weakness, failure to thrive, and hypertrophic cardiomyopa-
thy. When left untreated, death from respiratory failure often
occurs in the first 2 years of life.23,67 In contrast, patients
with LOPD have measurable residual enzyme activity and
present anytime between late infancy and adulthood with a
myopathy that progresses to respiratory insufficiency if left
untreated; however, cardiac involvement is rare.68 FDA-
approved ERT for patients with IOPD includes alglucosi-
dase alfa and FDA-approved ERT for patients with LOPD
includes alglucosidase alfa and avalglucosidase alfa-ngpt.

A strong clinical suspicion and absent enzyme activity
supports a clinical diagnosis of Pompe disease. Biomarker
analysis of urinary Glc4 may assist in distinguishing patients
with IOPD from LOPD. In neonates, Glc4 excretion is
typically elevated in patients with IOPD and within the
normal range in patients with LOPD.65,69,70 In contrast,
urinary Glc4 excretion is typically elevated in untreated ju-
veniles and adults with LOPD65 and can be used to monitor
response to ERT.71-74 ERT-treated patients may have an
increase in Glc4 excretion during intercurrent illness, such as
infection, that is usually temporary.73 Furthermore, Glc4
excretion may be temporarily increased in otherwise unaf-
fected individuals secondary to certain malignancies, acute
pancreatitis, muscle trauma, during pregnancy, and after
ingestion of starch and glycogen derived from meat.64,75
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Materials and Methods

The laboratory technical standard and guideline was
informed by a review of the literature, including any current
guidelines, and expert opinion. Resources consulted
included PubMed (search terms: biomarkers, lysosomal
storage disorders, glycosphingolipids, Fabry disease, lyso-
globotriaosylceramide, lyso-Gb3, Pompe disease, glucose
tetrasaccharide, Glc4, hexose tetrasaccharide, Hex4, Gaucher
disease, glucosylsphingosine, lyso-Gb1, glycopsychosine,
Krabbe disease, galactosylsphingosine, psychosine, and
tandem mass spectrometry), the American College of
Medical Genetics and Genomics (ACMG) Standards and
Guidelines for Clinical Genetics Laboratories, Clinical and
Laboratory Standards Institute (CLSI) guidelines, Clinical
Laboratory Improvement Amendments (CLIA) regulations,
Online Mendelian Inheritance in Man, GeneReviews, the
Centers for Disease Control and Prevention Morbidity and
Mortality Weekly Report on Good Laboratory Practices for
Biochemical Genetics Testing and Newborn Screening for
Inherited Metabolic Disorders.76 When the literature pro-
vided conflicting or insufficient evidence about a topic, the
authors used expert opinion to inform the recommendations.
Expert opinion included the coauthors of the document,
members of the Biochemical Genetics Subcommittee of the
Laboratory Quality Assurance Committee, and any experts
consulted outside the workgroup and acknowledged in this
document. Any conflicts of interests for workgroup mem-
bers are listed at the end of the article. The ACMG Labo-
ratory Quality Assurance Committee reviewed the
document providing further input on the content, and a final
draft was delivered to the ACMG Board of Directors for
review and approval to send out for member comment. The
final draft of the document was posted on the ACMG
website, and an email link was sent to ACMG members
inviting all to provide comment. All members’ comments
were assessed by the authors and our recommendations were
amended as deemed appropriate. Member comments and
author responses were reviewed by a representative of the
Laboratory Quality Assurance Committee and the ACMG
Board of Directors. The final document was approved by the
ACMG Board of Directors.

Biomarker Testing

Clinical indications for testing
Biomarker analysis can be used to assess disease burden and
monitor compliance with treatment in known patients. It has
also been shown to aid in the diagnosis of patients pre-
senting with symptoms or with a positive family history of
one of these disorders. Biomarker analysis may be most
useful for newborn screening to reduce false-positive re-
sults, to follow up ambiguous results of enzymatic analysis
in symptomatic patients, and to aid in the interpretation of
variants of uncertain clinical significance identified by mo-
lecular genetic testing.
Preanalytical requirements
The laboratory should provide clear instructions to clients
regarding the type of specimen, volume, shipping, and
storage conditions. Acceptable sample types and analyte
stability should be established by the testing laboratory
during validation and communicated to ordering health care
professionals upon request. The appropriate sample type for
each disorder discussed in this technical standard may vary.

Sample type, collection, handling, and storage
Clinical testing for LD biomarkers is performed in plasma or
dried blood spots for lyso-Gb3 and lyso-Gb1 analysis; whole
blood, dried blood spots, or cerebrospinal fluid for gal-
actosylsphingosine analysis; and urine for Glc4 analysis.
Lyso-Gb3, lyso-Gb1, and Glc4 analysis is also possible in
cerebrospinal fluid and may be useful in clinical trial design
or evaluating therapeutic response in patients.77,78

Analysis of lyso-Gb3 and lyso-Gb1 requires approxi-
mately 300 μL of plasma or serum obtained from approxi-
mately 1 mL of whole blood collected by venipuncture in a
lavender top (EDTA), green top (sodium heparin and
lithium heparin), yellow top (ACD B), or red top (SST)
tube. Galactosylsphingosine testing can be done in whole
blood or dried blood spots from 0.5 to 2.0 mL blood
collected in EDTA (preferred) or heparin (alternative).
Galactosylsphingosine analysis from cerebrospinal fluid
requires 0.15 mL. For Glc4 analysis, preprandial or fasting
urine samples are preferred to avoid dietary artifacts, spe-
cifically from formula additives for infants.75

Ideally, plasma, serum, and cerebrospinal fluid should be
shipped frozen on dry ice and stored frozen until analysis.
Whole blood should be shipped with wet ice and stored at
refrigerated temperature until analysis. Blood spots should
be collected on filter paper that meets the physical charac-
teristics and performance requirements specified by CLSI
guidelines (eg, Whatman 903).79 Blood spot samples should
be dried completely before shipping, kept away from direct
sunlight, and should avoid exposure to high humidity, heat,
and corrosive liquids, such as bleach and alcohol. Urine
should be collected in a clean container with no pre-
servatives and frozen, shipped on dry ice, and stored frozen
until ready for testing.

Method validation

Calibration and quantitation
At the time of this report, clinical laboratories in the United
States utilize stable isotope dilution liquid chromatography-
tandem mass spectrometry (LC-MS/MS) methods to quan-
tify lyso-Gb3, lyso-Gb1, galactosylphingosine, and Glc4.
Quantitation by these methods requires the use of a cali-
bration curve with isotope labeled internal standards
(deuterium or carbon-13) to control for matrix effects and
variations in extraction efficiency that could otherwise affect
method performance. Reagents and internal standards are
commercially available. When an internal standard is not
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available, laboratories may request an internal standard be
synthesized by a manufacturer or synthesize an internal
standard themselves. Performance of all internal standards
and reagents must be validated by each laboratory before
being put into use. As with any analytical assay, each lab-
oratory must establish their analytical protocols by assessing
various time points, analytical measurement range, and ef-
fects of interference. Performance characteristics should be
verified on a regular basis as detailed by CLSI80 and spec-
ified by CLIA.

Laboratories should prepare and evaluate performance
characteristics of quality control (QC) samples that are
analyzed alongside each batch of patient samples. The QC
samples should be prepared in the appropriate sample matrix
and include at least 2 levels that span the analytical mea-
surement range. Target ranges should be established for each
analyte by analyzing replicates over several runs, ideally by
multiple operators. Plasma and serum from normal in-
dividuals can be pooled and used as a normal/low QC for
plasma/serum-specific analytes. Similarly, urine from unaf-
fected individuals can be pooled and used as the low QC for
urine-specific analytes. Plasma, serum, and urine samples can
also be spiked with standards and used as a high QC; how-
ever, the stock solution of standards used to spike controls
should be different than the stock solution used to prepare
calibrators. The prepared high QC sample should measure
near the upper limit of quantitation and within the range of
values observed in patients. The use of Westgard rules for
clinical specimen analysis further controls the parameters for
quality patient diagnosis and reporting.81

Proficiency testing
Clinical laboratories must participate in an ongoing profi-
ciency testing (PT) program for biomarker testing adhering
to the requirements of regulatory agencies. The European
Research Network for Evaluation and Improvement of
Screening, Diagnosis and Treatment of Inherited Disorders
of Metabolism provides a commercially available, external
PT service for the quantitative analysis of lyso-Gb1 and
lyso-Gb3 in plasma/serum. Currently, no external PT pro-
grams for galactosylsphingosine and Glc4 analysis are
available. As an alternative PT approach, laboratories can
perform interlaboratory comparison through split sample
analysis, store aliquots of samples from affected individuals
and rerun these samples periodically, or perform clinical
correlation through the review of the electronic medical
record.82

Reference ranges
Reference ranges for all reportable analytes should be
established by the performing laboratory and periodically
verified and updated per the recommended CLSI guide-
lines.83 Before testing, mean biomarker levels should be
determined in a cohort of unaffected individuals, if possible,
and in disease-affected individuals to obtain both a normal
reference range and an affected range. It is important to note
that Glc4 reference ranges are age dependent. Reference
ranges should be established or verified for each specimen
type used for clinical testing during validation because there
may be significant differences between sample types.

Testing personnel
Initial training and ongoing competency assessment must be
established and documented by the performing laboratory.
Qualifications for personnel performing high complexity
testing must meet CLIA requirements and, at a minimum,
have an associate degree in laboratory science or certifica-
tion in medical laboratory technology from an accredited
program. Stricter requirements and regulations determined
by individual states may apply.

Biomarker analysis

Several methods detailed below have been published for
biomarker analysis in biological samples. These include
approaches for sample preparation, chromatographic sepa-
ration, derivatization, and analyte detection and quantifica-
tion. All offer high sensitivity and sufficiently low detection
limits for clinical applications but differ in the equipment
required, workflow, and capital equipment cost. Chro-
matographic methods, immunoassays, and fluorescence or
ultraviolet (UV) detection are simpler and available at a
lower capital cost than LC-MS/MS or gas chromatography-
mass spectrometry methods.

Sample preparation
A specimen cleanup step to remove interfering compounds
is a general prerequisite for biomarker analysis via fluores-
cence detection, UV detection, gas chromatography-mass
spectrometry, and/or LC-MS/MS detection. Stable isotope
dilution is used in combination with LC-MS/MS to improve
analytical performance. Urine samples generally require an
initial centrifugation step to remove debris before the
addition of the stable isotope internal standard. Liquid-liquid
extraction,84-88 solid-phase extraction,87,89 or an in-line
column cleanup method90 are commonly used techniques
to obtain extracts containing the analyte of interest with the
latter offering a simpler and faster method of protein pre-
cipitation and phospholipid removal.
Analytical methods for lyso-Gb3
Purified extracts are subjected to LC coupledwithfluorescence
detection or triple quadrupole MS/MS to detect and quantify
lyso-Gb3. Fluorescence-based methods require precolumn
derivatization with o-phtaldialdehyde reagent, which can lead
to interference from other o-phtaldialdehyde-reactive com-
pounds.34 Compounds are separated using high-performance
liquid chromatography (HPLC), detected at excitation and
emission wavelengths of 340 and 435 nm, respectively, and
quantified relative to an external standard curve.

Chromatographic separation can be achieved using HPLC
or ultra-performance liquid chromatography with a C18
reverse phase or hydrophilic interaction chromatography
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column. Nano-LC-MS applications have also been
described.84 Although no structural isomers of lyso-Gb3 have
been reported, several isoforms with modifications to the
sphingosine backbone have been identified.85-88 MS/MS is
performed using electrospray ionization in positivemode, and
peaks are detected by selected reaction monitoring for the
transitions m/z 786→282 (underivatized lyso-Gb3 [M+H]+
ion) and 793→289 (d7-lyso-Gb3).

Analytical methods for lyso-Gb1 and galactosyls-
phingosine
Lyso-Gb1 and galactosylsphingosine are structural isomers
(isobars) and therefore are detected by the same mass
transition with MS/MS. Chromatographic separation before
mass spectrometry analysis is required to distinguish be-
tween the 2, using a C18 reverse phase, BEH amide, or
hydrophilic interaction chromatography column.91 For
known patients with Gaucher disease, quantification of the
total hexosylsphingosine (lyso-Gb1 plus galactosyl-
sphingosine) fraction offers an alternative approach for lyso-
Gb1 analysis to reduce run times.61,92-95 Purified extracts are
subjected to LC coupled with fluorescence detection or tri-
ple quadrupole MS/MS to detect and quantify lyso-Gb1 and
galactosylsphingosine. MS/MS is performed using electro-
spray ionization in positive mode, and peaks are detected by
selected reaction monitoring for the transitions m/z
462→282 for underivatized lyso-Gb1 and galactosyl-
sphingosine [M+H]+ ion, m/z 468→282 for 13C6-lyso-Gb1,
and m/z 467→287 for d5-galactosylsphingosine.

96

Fluorescence-based methods offer an alternate method for
lyso-Gb1 analysis and require precolumn derivatization with
4-fluoro-7-nitrobenzofurazan (NBD-F) reagent.89 Com-
pounds are separated using HPLC, detected at excitation and
emission wavelengths of 470 and 530 nm, respectively, and
quantified relative to an external standard curve.

Analytical methods for Glc4
Purified extracts are subjected to GC or LC coupled with
UV detection, MS, or triple quadrupole MS/MS to detect
and quantify Glc4. Precolumn derivatization with para-
aminobenzoic acid (PABA)71 reagent is required before
UV detection at a wavelength of 304 nm and quantified
relative to an external standard curve.97 In addition to
PABA, 1-phenyl-3-methyl-5-pyrazolone98 derivatization
may be used before LC-MS/MS detection, although deriv-
atization is not required for analysis.64

HPLC separation with a C18 reverse phase is required to
resolve Glc4 from other glycans. MS/MS is typically per-
formed using electrospray ionization in positive mode64,71;
however, matrix-assisted laser desorption ionization offers
an alternative. PABA-derivatized peaks are detected by
selected reaction monitoring for the transitions m/z
866→509 for Glc4 [M+H]+ ion and m/z 872→509 for 13C6-
Glc4. Underivatized Glc4 identified and quantified by MS/
MS in negative ion mode monitors the transition m/z
665→179 [M-H]−.64 Separation of Glc4 from its isomer
maltotetraose (M4) can be achieved with chromatography by
an ultra-performance liquid chromatographyamide
stationary-phase column.64

Results Interpretation
Results of biomarker analysis should be reviewed and
interpreted by an American Board of Medical Genetics and
Genomics board-certified clinical biochemical geneticist or
another qualified individual.99 The interpretation should
consider not just the numeric result but also the age of the
patient, previous test results, and other supporting infor-
mation, such as a reason for referral, family history, or
known treatment. Although not always available, this in-
formation can be helpful to provide more targeted recom-
mendations for future testing (either sequential analysis for
monitoring purposes or more conclusive diagnostic analyses
if biomarker testing may have been ordered inappropriately
or inappropriate specimen type was collected).

Because results for Glc4 are reported as excreted amount
per unit of creatinine, spurious elevations of Glc4 may be
due to low creatinine values for the submitted specimen.
Although this is most commonly observed in infants, it can
also be seen in older individuals.

It is important to note that although results of biomarker
analysis can help to support a particular diagnosis, a normal
result does not rule out disease because patients with
attenuated phenotypes may not show evidence of substrate
accumulation at the time of testing. Interpretations may
include the assessment of other laboratory findings (eg,
enzyme analysis and gene sequencing results) and take into
consideration the clinical and treatment history, when
available.

Reporting
Patient reports must include patient and specimen informa-
tion as specified by CLIA and in accordance with the ACMG
Standards and Guidelines for Clinical Genetics Laboratories,
sections 2.4, 2.41, and 2.42. In addition to the required patient
and specimen information, written reports should specify the
targeted analyte, include the reported concentration, units of
measurement (eg, μmol/L or ng/mL), reference range, results
interpretation (see “Interpretation”), the type of testing per-
formed (eg, investigational, laboratory-developed, or FDA-
cleared), and any limitations of testing that may be
observed. Recommendations for follow-up testing (ie,
confirmation with enzyme analysis and/or molecular testing)
may also be included, when appropriate.
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